
APPLICATION AND DATA SECURITY

Makerere University

Faculty of Technology

College of Design, Art and Technology

By Stephen Senkomago Musoke

http://ssmusoke.com

O c t o b e r 2 0 1 9

http://ssmusoke.com/

WHY ME?

 Self taught software tinkerer who loves growing techies

Working hard at a normal regular family life

My fair share of failed, successful, mind blowing and soul

haunting projects

 Served clients in UK, US, Australia, Europe, South Africa

 12 years setting up, growing & running a Ugandan

custom software development shop

 Executive management stint - Worked in and ran a large

international custom software service provider in South

Africa & Uganda

 4 years back to full time software delivery practice 2

APPLICATION SECURITY

3

Do not under-estimate the

need for security at all levels

everyone is out to get you

~Stephen Senkomago Musoke

4

PRINCIPLES  Confidentiality – access is to only the
data a user needs

 Integrity – data is not altered outside
pre-defined protocols

 Availability – systems are accessible and
useable to those users who need them,
when they need them

5

Security is a

measure of

quality that has

to be baked into

software not

bolted on

Simplicity is the

ultimate

sophistication

APPROACHES  First class citizen in requirements gathering,
architecture and design

 Requirements:

 Authorization – who can do what, when?

 Who can see what when?

 Architecture – 12factor.net

 Design

 Phoenix servers

 Plan for failure – NetFlix Chaos Monkey

 Go as simple as you can

 OWASP - Open Web Application Security
Project 6

Security is a

measure of

quality that has

to be baked into

software not

bolted on

Simplicity is the

ultimate

sophistication

12 FACTOR

 Codebase - One codebase tracked in version control, many

deploys- trunk based development

 II. Dependencies - Explicitly declare and isolate dependencies

e.g., composer.json, package.json, pom.xml

 III. Config – store config in the environment encrypted

TRAVIS variables, Hashicorp Vault, AWS Secrets

 IV. Backing services - Treat backing services as attached

resources they are all the same

 V. Build, release, run - Strictly separate build and run stages

and each should be atomic

 VI. Processes - Execute the app as one or more stateless

processes

7

https://www.12factor.net/codebase
https://www.12factor.net/dependencies
https://www.12factor.net/config
https://www.12factor.net/backing-services
https://www.12factor.net/build-release-run
https://www.12factor.net/processes

12 FACTOR

 VII. Port binding – everything is stateless and share

nothing

 VIII. Concurrency – just add more workers

 IX. Disposability - Maximize robustness with fast startup

and graceful shutdown, do not leak secrets

 X. Dev/prod parity - Keep development, staging, and

production as similar as possible

 XI. Logs - Treat logs as event streams (observability)

 XII. Admin processes - Run admin/management tasks as

one-off processes e.g., migrations, cleanup scripts

(housekeeping)
8

https://www.12factor.net/port-binding
https://www.12factor.net/concurrency
https://www.12factor.net/disposability
https://www.12factor.net/dev-prod-parity
https://www.12factor.net/logs
https://www.12factor.net/admin-processes

OWASP GUIDELINES

Minimize attack surface

 Establish secure defaults – password policy, expiry,

access control

 Principle of least privilege –

 Defense in depth – layer the security controls, combine

multiple security protocols & approaches

 Fail securely – handle errors gracefully, expose minimal

information in errors and stack traces

 Don’t trust systems & services – validate data inputs,

lock down access

9

OWASP GUIDELINES

 Separation of duties and responsibilities

 Avoid security by obscurity – do not keep a key under

the carpet because nobody knows its there

 Keep security simple

 Fix security issues correctly - carry out a root cause

analysis, identify potential changes in design

10

DEVELOPMENT  Write as little code as possible – leverage pre-
built libraries

 Tech stack – use the simplest you can find

 Testing - automate as much as you can and
make them run as fast as you can

 Deployment – deploy as frequently as you can

 Validate against best practices in the industry &
lessons from others

11

Good

developers write

excellent code,

great developers

write no code,

zen developers

delete code

PRODUCTION
SYSTEM
SECURITY

 Monitor, monitor, monitor – respond to failures
they happen (keep the lights on), predict failure

 Automate credential management

 Systems fail – bake failure into the process

 Layer security

 Web Application Firewalls

 Proxies (for performance)

 Anti-virus & Anti-malware protection

 DDOS protection – high availability

 Hire experts to scan your systems and advise

12

PRODUCTION
SYSTEM
SECURITY

 Leverage standards and best practices – NIST,
CERT, BS, ISO

 Upgrade and patch your systems

 Use the least privilege for any activity – restrict
access to root and administrator accounts

13

DATA
SECURITY

 Secure your data at rest, in transit and storage

 Encrypt what you need

 TLS, SSL & HTTPS

 Encrypted backups???

 Datensparsamkeit – only collect and handle the
data that you need – do you need that PII, that
extra data on days visited or just aggregate

 Backup your data

 Verify the backups by restoring them

14

Trust but verify

IN CLOSING

Security is not a one off event but a continuous activity

Security is built in layers – one on top of another

Security is complex and difficult, use experts, standards and best

practices for ”your” environment & needs

AND MOST OF ALL

Security is every-body’s responsibility

1
5

THANK YOU

For questions or suggestions

@ssmusoke

http://ssmusoke.com

http://ssmusoke.com/

